

Architecture of ICT services for integrated logistics

Flavio Bonfatti University of Modena & Reggio Emilia

The SEEM perspective

D Towards the Single European Electronic Market

- □ A practical, bottom-up approach
- □ On sectoral themes and a limited territory: business ecosystems
- □ By constituting registries of (small-sized) enterprises
- □ And offering simple and affordable services

Opportunity: the Regional Telematic Plan

- Focus on the logistic theme
- □ And the territory of the Emilia-Romagna Region
- Construction of a network of value-added services
- Open to the participation of third parties
- □ And linking the enterprise legacy systems

The **STIL** project (Integrated Digital Logistics)

The STIL project

Concept of Virtual Logistic District

- "... a space on the Web where demand and offer of logistic services can meet with no relevant operational and technological restraints ..."
- An integrated view of the logistic systems located in the territory
- □ Interoperability of the information systems of the involved enterprises
- Thus, constitution of a "virtual logistic district" at the regional scale

The STIL consortium

- Coordination: Catholic University of Piacenza
- Other universities: Bologna, Modena & Reggio Emilia, Parma
- Development agencies: ASTER (BO), Democenter (MO)
- Software houses: Gruppo PRO (BO), Gruppo Sistema (FC), SATA (MO)
- □ Consulting companies: Harimann (PR), NICOM (PC)
- □ Logistic operator: Piacenza Intermodale (PC)

Identified needs /1

By user companies

×	Monitoring the final delivery	5.0
×	Keeping transport costs under control	5.0
×	Strategic simulation	5.0
×	Interoperability with hauliers	4.5
×	Interoperability with suppliers	4.0
	Control of truck arrival and departure	4.0
	Tracking & tracing	4.0
×	Aggregation of demand	3.0
×	Search for the best operator	3.0
	Support to custom operations	2.5
	Services for large distribution systems	2.0
×	Internal fleet planning	1.5
	RFID e warehouse management	1.5
	Infomobility and GIS	1.0

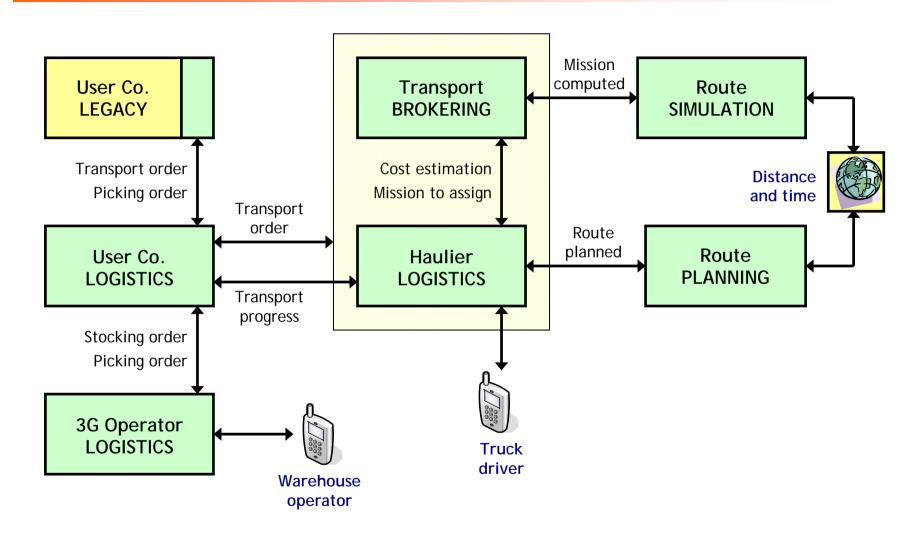
Identified needs /2

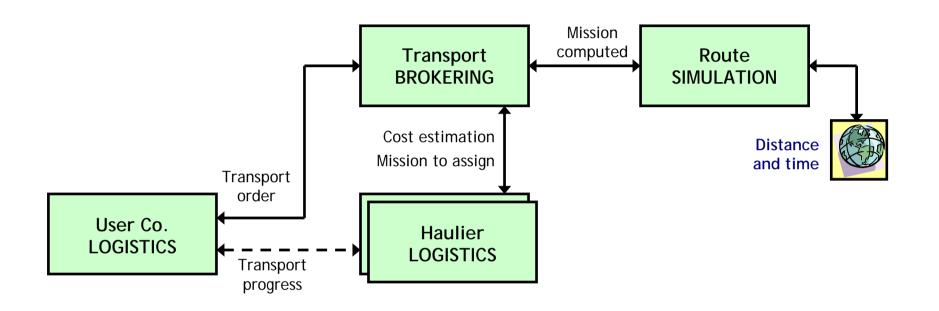
By 3G logistic operators

x	Security in communication	5.0
	Control of incoming/outcoming trucks	5.0
	Control of incoming/outcoming goods	2.5
×	Interoperability with hauliers	2.5
	Management of shared resources	2.5
	Tele-control of buildings and spaces	2.5
×	Internal fleet planning	2.5
	Infomobility and GIS	2.5

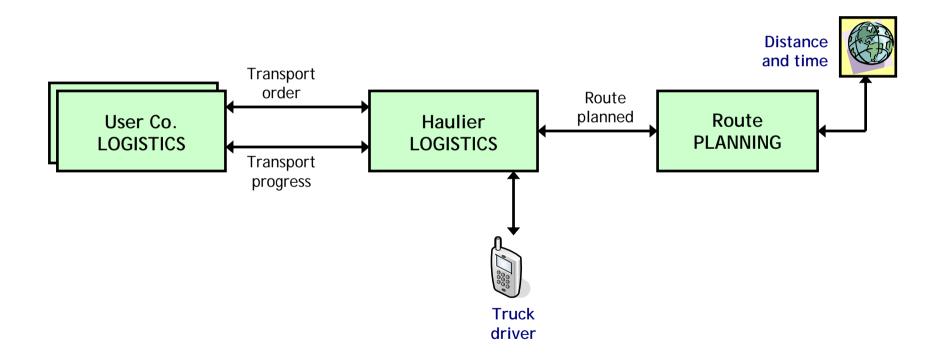
Communication problems

□ Materials flows ⇔ data flows


- Price lists, transport and stock conditions, constraints
- □ Requests for quotation, quotation, orders (for logistic services)
- □ Order progress, shipping notes, invoices, payments
- Etc.

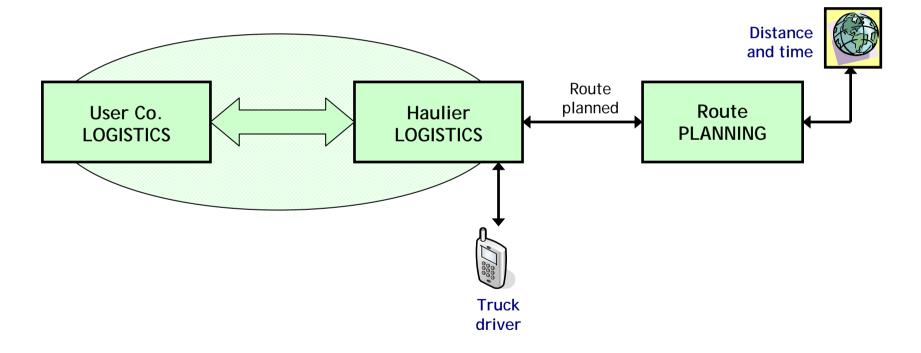


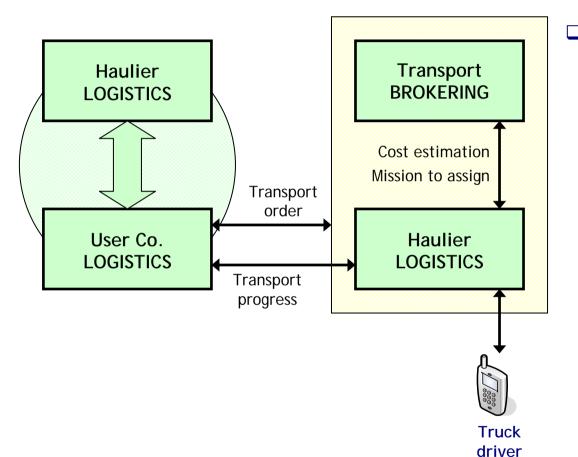
Service architecture


One or more user companies ask the Broker for the best transport solution for its own orders

Scenario 2: the Haulier

One or more user companies send directly their transport orders to selected hauliers

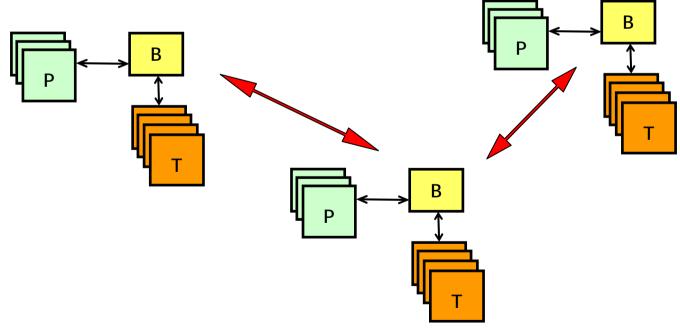



□ The manufactures is provided with its own fleet

- □ It manages the fleet by integrating two logistic functions
- □ The User Co. logistics and the haulier logistics

The logistic operator assigns missions to other hauliers

- It manages this relation with two logistic functions
- Behaving as a haulier with respect to customers
- Behaving as a user wit respect to sub contractors



A wider perspective

Network of virtual logistic districts

- □ With sectoral/regional/modal specialisations
- And the possibility to offer complex services to the users of each of the network nodes
- □ Thanks to the services provided by by them a s a whole

Final remarks

□ The STIL services are prototyped

- □ Tested in several pilots of different projects
- □ In collaboration with the Emilia-Romagna region
- □ And with the participation of several companies

Development directions

- □ Implementing the Business Ecosystem concept
- Operating the virtual logistic district as a Living Lab
- Promoting the deployment of the Broker function
- □ (which is meeting increasing interest at user companies)

